Millennium Post

New 3D scaffold can transform cells to muscle

Melbourne: In a breakthrough, Australian scientists have successfully produced a 3D material that mimics nature to transform cells into muscle.
The advance offers hope to people suffering from injuries where their muscles cannot repair themselves due to trauma or disease, researchers said. The team at RMIT University in Australia combined lab-made peptides with natural proteins and polymers to create a 3D "hydrogel scaffold".
They have for the first time incorporated the natural processes of embryonic development to build a material that can more naturally communicate with stem cells for effective tissue repair.
The scaffold uses natural mechanisms to incorporate signals found in the natural developmental environment to support and engineer stem cells into muscle fibre.
"Our stem cells are at their best during development, where a scaffold drives them to produce all our tissues and organs; yet as people grow and age, they lose this ability and get a build-up of undesirable structures," said Richard Williams from RMIT University.
There is a real need for ways to repair and replace parts of the body as they wear out or become damaged, particularly as our population is now living longer, researchers said.
"Essentially, we make a scaffold that sends healthy signals to the cells to reorganise themselves to start to grow the small fibres that make up a healthy muscle," said Williams, who led the study published in the journal Biomacromolecules.
"It's like travelling back in time when our potential for tissue development and repair was at its best," he said.
Williams said it is a "simple process" to deliver complex structures inspired by the way nature pieces structures together during development, starting with only two cells.
"We have developed a simple, cheap, yet powerful toolkit that encourages different environments to let different tissues grow," he said.
Next Story
Share it