Researchers from India, Israel, US trying to develop drug to treat 'GNB1 Encephalopathy'
New Delhi: Researchers at the Indian Institute of Technology (IIT), Madras, Tel Aviv University and Columbia University are studying a rare genetic brain disease called "GNB1 Encephalopathy" and trying to develop a drug to treat it effectively.
With less than 100 documented cases worldwide, GNB1 Encephalopathy is a kind of neurological disorder which affects individuals in the foetus stage.
Scientists say delayed physical and mental development, intellectual disabilities, frequent epileptic seizures, are among the early symptoms of the disease and since genome-sequencing is an expensive procedure, not many parents opt for it early on.
According to Haritha Reddy, a former PhD scholar at IIT Madras, a single nucleotide mutation in the GNB1 gene that makes one of the G-proteins, the "G 1 protein," causes this disease.
"This mutation affects the patient since they are a foetus. Children born with GNB1 mutation experience mental and physical developmental delay, epilepsy (abnormal brain activity), movement problems. To date, less than a hundred cases have been documented worldwide.
"However, the actual number of affected children is probably much greater as diagnosis is not widely available since it requires a sophisticated and expensive procedure," Reddy told from Israel, where she is conducting the research.
"Every cell in the human body has a wide variety of signalling molecules and pathways that help in communicating with other cells and within itself. The major signalling mechanism used by cells is 'G-Protein Coupled Receptor' (GPCR) signalling," she added.
The GPCR is a receptor that receives a signal (e.g. a hormone, light, neurotransmitter) from the outside of the cell and transduces it to the inside of the cell.
"GPCR is present in the cell membrane and has a G-protein attached to it from inside the cell. G-proteins are the immediate downstream molecules that relay the signal received by the GPCR. These G-proteins are present in every cell, and any malfunction will cause disease," she explained.
Mutations in GNB1 gene cause the neurological disorder characterised by general develop- mental delay, epileptiform activity in the electroencephalogram (EEG) and seizures of several types, muscle hypotonia or hypertonia, and additional variable symptoms, are seen in the patients.
According to Amal Kanti Bera, Professor, Department of Biotechnology, IIT Madras, as GNB1 encephalopathy is a rare and less-known disease, not much research has been done on this.
"We don't know the mechanisms that underlie the disease. We don't know how to treat this disease. Therefore, it is import to do research on GNB1 encephalopathy.We have a long way to go. It is not easy to develop a drug for treating this disease effectively," he told.
"We are in the process of developing preclinical animal models of this disease. Hopefully, in three years we will be able to develop personalised disease models which will be useful in research and drug screening," he told.